Search results for "Nearest neighbor"

showing 10 items of 63 documents

K-nearest neighbor driving active contours to delineate biological tumor volumes

2019

Abstract An algorithm for tumor delineation in positron emission tomography (PET) is presented. Segmentation is achieved by a local active contour algorithm, integrated and optimized with the k-nearest neighbor (KNN) classification method, which takes advantage of the stratified k-fold cross-validation strategy. The proposed approach is evaluated considering the delineation of cancers located in different body districts (i.e. brain, head and neck, and lung), and considering different PET radioactive tracers. Data are pre-processed in order to be expressed in terms of standardized uptake value, the most widely used PET quantification index. The algorithm uses an initial, operator selected re…

0209 industrial biotechnologyK-nearest neighborComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFDG and MET PET imagingStandardized uptake value02 engineering and technologyImaging phantomk-nearest neighbors algorithmActive contour algorithm020901 industrial engineering & automationArtificial IntelligenceRegion of interest0202 electrical engineering electronic engineering information engineeringSegmentationElectrical and Electronic EngineeringActive contour modelbusiness.industryProcess (computing)Pattern recognitionCancer segmentationBiological target volumeControl and Systems Engineering020201 artificial intelligence & image processingArtificial intelligencebusinessEnergy (signal processing)Engineering Applications of Artificial Intelligence
researchProduct

Optimal Pruned K-Nearest Neighbors: OP-KNN Application to Financial Modeling

2008

The paper proposes a methodology called OP-KNN, which builds a one hidden-layer feed forward neural network, using nearest neighbors neurons with extremely small computational time. The main strategy is to select the most relevant variables beforehand, then to build the model using KNN kernels. Multi-response sparse regression (MRSR) is used as the second step in order to rank each k-th nearest neighbor and finally as a third step leave-one-out estimation is used to select the number of neighbors and to estimate the generalization performances. This new methodology is tested on a toy example and is applied to financial modeling.

Artificial neural networkRank (linear algebra)GeneralizationComputer scienceKernel (statistics)Financial modelingFeedforward neural networkRegression analysisData miningcomputer.software_genrecomputerk-nearest neighbors algorithm2008 Eighth International Conference on Hybrid Intelligent Systems
researchProduct

Bivariate nonlinear prediction to quantify the strength of complex dynamical interactions in short-term cardiovascular variability.

2005

A nonlinear prediction method for investigating the dynamic interdependence between short length time series is presented. The method is a generalization to bivariate prediction of the univariate approach based on nearest neighbor local linear approximation. Given the input and output series x and y, the relationship between a pattern of samples of x and a synchronous sample of y was approximated with a linear polynomial whose coefficients were estimated from an equation system including the nearest neighbor patterns in x and the corresponding samples in y. To avoid overfitting and waste of data, the training and testing stages of the prediction were designed through a specific out-of-sampl…

Bivariate time seriePhysics::Medical PhysicsBiomedical EngineeringBlood PressureBivariate analysisOverfittingCross-validationk-nearest neighbors algorithmCardiovascular Physiological PhenomenaHealth Information ManagementHeart RateTilt-Table TestStatisticsApplied mathematicsHumansComputer SimulationPredictabilityHeart rate variabilityMathematicsHealth InformaticBaroreflex controlSystolic arterial pressure variabilityUnivariateModels CardiovascularNonlinear predictionComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science ApplicationsNonlinear systemComputational Theory and MathematicsNonlinear DynamicsLinear approximationMedicalbiological engineeringcomputing
researchProduct

Pattern classification using a new border identification paradigm: The nearest border technique

2015

Abstract There are many paradigms for pattern classification such as the optimal Bayesian, kernel-based methods, inter-class border identification schemes, nearest neighbor methods, nearest centroid methods, among others. As opposed to these, this paper pioneers a new paradigm, which we shall refer to as the nearest border (NB) paradigm. The philosophy for developing such a NB strategy is as follows: given the training data set for each class, we shall attempt to create borders for each individual class. However, unlike the traditional border identification (BI) methods, we do not undertake this by using inter-class criteria; rather, we attempt to obtain the border for a specific class in t…

Class (set theory)Theoretical computer scienceComputer sciencebusiness.industryCognitive NeuroscienceCentroidComputer Science Applicationsk-nearest neighbors algorithmSet (abstract data type)Kernel (linear algebra)Identification (information)Artificial IntelligenceKernel (statistics)OutlierArtificial intelligencebusiness
researchProduct

Cluster-based RF fingerprint positioning using LTE and WLAN signal strengths

2017

Wireless Local Area Network (WLAN) positioning has become a popular localization system due to its low-cost installation and widespread availability of WLAN access points. Traditional grid-based radio frequency (RF) fingerprinting (GRFF) suffers from two drawbacks. First it requires costly and non-efficient data collection and updating procedure; secondly the method goes through time-consuming data pre-processing before it outputs user position. This paper proposes Cluster-based RF Fingerprinting (CRFF) to overcome these limitations by using modified Minimization of Drive Tests data which can be autonomously collected by cellular operators from their subscribers. The effect of environmental…

Computer Networks and CommunicationsComputer scienceReal-time computingK-means clustering02 engineering and technologySignallaw.inventionK-nearest neighbors0203 mechanical engineeringlaw0202 electrical engineering electronic engineering information engineeringfuzzy C-means clusteringWi-FiElectrical and Electronic EngineeringData collectionbusiness.industryFingerprint (computing)k-means clusteringRF fingerprint positioning020206 networking & telecommunications020302 automobile design & engineeringGridHardware and ArchitectureEmbedded systemMinificationRadio frequencybusinesshierarchical clustering
researchProduct

Deep CNN for IIF Images Classification in Autoimmune Diagnostics

2019

The diagnosis and monitoring of autoimmune diseases are very important problem in medicine. The most used test for this purpose is the antinuclear antibody (ANA) test. An indirect immunofluorescence (IIF) test performed by Human Epithelial type 2 (HEp-2) cells as substrate antigen is the most common methods to determine ANA. In this paper we present an automatic HEp-2 specimen system based on a convolutional neural network method able to classify IIF images. The system consists of a module for features extraction based on a pre-trained AlexNet network and a classification phase for the cell-pattern association using six support vector machines and a k-nearest neighbors classifier. The class…

Computer science02 engineering and technologyConvolutional neural networklcsh:TechnologyIIF imageAlexNetlcsh:Chemistry03 medical and health sciencesconvolutional neural networks (CNNs)Autoimmune diseaseClassifier (linguistics)0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceautoimmune diseasesInstrumentationlcsh:QH301-705.5030304 developmental biologyIIF imagesFluid Flow and Transfer Processes0303 health sciencesDeep cnnIndirect immunofluorescenceaccuracybusiness.industrylcsh:TProcess Chemistry and Technologyk-nearest neighbors (KNN)General EngineeringPattern recognitionIIfClass (biology)lcsh:QC1-999Computer Science ApplicationsSupport vector machinelcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040System parameters020201 artificial intelligence & image processingsupport vector machine (SVM)Artificial intelligencebusinesslcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsApplied Sciences
researchProduct

Editing prototypes in the finite sample size case using alternative neighborhoods

1998

The recently introduced concept of Nearest Centroid Neighborhood is applied to discard outliers and prototypes 111 class overlapping regions in order to improve the performance of the Nearest Neighbor rule through an editing procedure, This approach is related to graph based editing algorithms which also define alternative neighborhoods in terms of geornetric relations, Classical editing algorithms are compared to these alternative editing schemes using several synthetic and real data problems. The empirical results show that, the proposed editing algorithm constitutes a good trade-off among performance and computational burden.

Computer scienceDelaunay triangulationbusiness.industryCentroidMachine learningcomputer.software_genreClass (biology)k-nearest neighbors algorithmSample size determinationPattern recognition (psychology)OutlierArtificial intelligenceData miningbusinesscomputer
researchProduct

An Information-Theoretic Framework to Measure the Dynamic Interaction between Neural Spike Trains

2021

Understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience. However, an optimal approach of assessing these interactions has not been established, as existing methods either do not consider the inherent point process nature of spike trains or are based on parametric assumptions that may lead to wrong inferences if not met. This work presents a framework, grounded in the field of information dynamics, for the model-free, continuous-time estimation of both undirected (symmetric) and directed (causal) interactions between pairs of spike trains. The framework decomposes the overall information exchanged dynami…

Computer scienceSpike trainEntropyModels NeurologicalBiomedical EngineeringAction Potentials01 natural sciencesAtmospheric measurementsPoint process010305 fluids & plasmask-nearest neighbors algorithm0103 physical sciencesEntropy (information theory)Computer Simulation010306 general physicsBiomedical measurementmutual informationpoint processesParametric statisticsNeuronsneural synchronyQuantitative Biology::Neurons and CognitionParticle measurementstransfer entropyMutual informationTime measurementSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)FOS: Biological sciencesQuantitative Biology - Neurons and CognitionSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaNeurons and Cognition (q-bio.NC)Transfer entropySpike (software development)information dynamicsAlgorithmEstimationIEEE Transactions on Biomedical Engineering
researchProduct

Protein data condensation for effective quaternary structure classification

2007

Many proteins are composed of two or more subunits, each associated with different polypeptide chains. The number and the arrangement of subunits forming a protein are referred to as quaternary structure. The quaternary structure of a protein is important, since it characterizes the biological function of the protein when it is involved in specific biological processes. Unfortunately, quaternary structures are not trivially deducible from protein amino acid sequences. In this work, we propose a protein quaternary structure classification method exploiting the functional domain composition of proteins. It is based on a nearest neighbor condensation technique in order to reduce both the porti…

Computer sciencebusiness.industryData condensationBioinformatics Protein ClassificationProtein amino acidComposition (combinatorics)Machine learningcomputer.software_genreDomain (mathematical analysis)k-nearest neighbors algorithmOrder (biology)Protein quaternary structureArtificial intelligenceBiological systembusinesscomputerPseudo amino acid composition
researchProduct

Local Feature Selection with Dynamic Integration of Classifiers

2000

Multidimensional data is often feature space heterogeneous so that individual features have unequal importance in different sub areas of the feature space. This motivates to search for a technique that provides a strategic splitting of the instance space being able to identify the best subset of features for each instance to be classified. Our technique applies the wrapper approach where a classification algorithm is used as an evaluation function to differentiate between different feature subsets. In order to make the feature selection local, we apply the recent technique for dynamic integration of classifiers. This allows to determine which classifier and which feature subset should be us…

Computer sciencebusiness.industryDimensionality reductionFeature vectorDecision treeFeature selectionPattern recognitionEvaluation functionMachine learningcomputer.software_genreFeature modelk-nearest neighbors algorithmMinimum redundancy feature selectionArtificial intelligencebusinesscomputer
researchProduct